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We study phase separation in a polymerizing system by means of Monte Carlo simulation on a triangular 
lattice. This serves as a model for the processes occurring in the formation of polymer-dispersed liquid 
crystals (PDLCs). The resulting structures are dependent not only on temperature and concentration but 
also on the relative rates of polymerization and diffusion. The effective phase diagrams observed in the 
simulations can be approximated by Flory-Huggins theory when the degree of polymerization is treated as 
an adjustable parameter. The time-resolved structure factor is less well approximated by an expression of the 
Lifshitz-Slyozov type. Copyright © 1996 Elsevier Science Ltd. 
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INTRODUCTION 

Polymer-dispersed liquid crystals (PDLCs) have become 
a topic of recent interest 1-7 as a consequence of their wide 
range of potential electro-optical applications and the 
challenging nature of some problems in the theoretical 
interpretation of their formation and operation. Phase 
separation is the key process used in forming PDLCs, 
which are micron-sized droplets of low-molecular-weight 
liquid crystals (LC) in a polymer matrix. The phase 
separation process from uniform mixtures of liquid 
crystals and polymer precursor is essential in three 
commonly used techniques for producing PDLCsl-5'7: 
polymerization of the polymer precursor to form a linear 
(thermoplastic) or cross-linked (thermoset) matrix; 
quench of a mixture of a LC and a linear polymer; and 
evaporation of a common solvent dissolving the liquid 
crystal and polymer. 

Phase separation processes used in making PDLC 
films have many advantages over other techniques for 
producing similar films 1'4, including control of size and 
uniformity of  the LC droplets, application to a wide 
range of polymers, and simplicity and low cost in 
production. The droplet size, morphology, and uni- 
formity are important factors in determining the 
electro-optical properties of PDLC films, and are 
dependent on such phase separation parameters as 
temperature, concentration, and polymerization rate 
(in polymerization-induced phase separation), cooling 
rate (in thermally-induced phase separation) or evap- 
oration rate (in the solvent-induced case). 

In this paper we study the phase separation process 
induced by polymerization in forming PDLC films. Our 
goal is a qualitative understanding of the effects of 
temperature, polymerization rate and concentration on 
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the resulting droplet size and uniformity. To achieve this 
we perform a Monte Carlo simulation on a triangular 
lattice to simulate the polymerization-induced phase 
separation in an initially uniform (randomly distributed) 
mixture of LC molecules and polymer precursor (mono- 
mers). At this stage we do not include the anisotropy of 
the LC molecules, as we consider our two-dimensional 
system to be in a plane perpendicular to the director of 
the LC. That is to say, the LC molecules are assumed to 
be oriented out of the plane of the paper in the 
illustrations of phase-separating systems shown in the 
figures. In the course of the computation we shall obtain 
the phase diagrams of the polymerized and unpolymer- 
ized systems and note the variation with time of the 
structure factor during the polymerization process. 

It has been shown experimentally | .3 that in general the 
size of the LC droplets decreases with increasing cure 
temperature. Similarly, a higher polymerization rate 
(cure rate) results in smaller LC droplets 8'9. Higher cure 
temperature also decreases the time for complete cure 8'9. 
The morphology of the phase-separated structure is 
normally that of nearly spherical LC inclusions 1'2'4'7, 
although other structures, such as polymer balls 1° and 
interconnected LC structures 11, have been reported. 

Phase diagrams of PDLCs have been studied experi- 
mentally by several authors 3'7'11'12, who found behaviour 
characteristic of an upper critical solution temperature. 
The phase diagram thus has a maximum temperature 
above which the system is in a single phase. The phase 
separation temperature was found to be a monotonically 
increasing function of the molecular weight of the 
matrix, and so polymerization moves upward the critical 
temperature curve in a temperature-concentration plot. 
This has also been shown using Flory-Huggins theory in 
a numerical calculation of the phase diagram of a LC and 

13-15 photocurable prepolymer system . 
Time-resolved light scattering experiments are useful 

in studying the kinetics of the phase separation process in 
PDLCs. The scattered light intensity as a function of 
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Figure 1 The triangular lattice on which the Monte Carlo simulations 
are performed. The solid lines represent polymer bonds 

scattering angle shows a peak at an angle not equal to 
zero, and the peak grows and the angle decreases 
with time ll'16. A sudden increase in scattered-light 
intensity can be used as a signature of the occurrence 
of an appreciable phase separation ~ 1,16. In other polymer 
systems, mostly polymer blends and polymer-solvent 
systems, light scattering studies of  phase separation 
have been undertaken much more extensively both in 
experiment and in theory 17 22, and show many aspects 
of the behaviour of the structure factor that are 
similar to those seen in PDLC films. We now proceed 
to see to what extent our simulations can yield com- 
parable results, 

MONTE CARLO MODEL 

The model we use to study the phase separation process 
in a binary mixture of low-molecular-weight liquid- 
crystal molecules and polymerizing monomers is a two- 
dimensional triangular lattice (Figures  1 - 4 )  with each 
site occupied by either a LC molecule (blue circle) or a 
monomer (red circle). The triangular lattice is used to 
simulate the close packing of molecules in an incom- 
pressible system. Liquid crystal molecules and mono- 
mers are initially randomly distributed on the lattice with 
probability c and (1 - c) respectively, to form a uniform 
mixture. The lattice system is assumed to obey periodic 
boundary conditions in two directions in order to 
minimize the boundary effects of a finite-size system. 
Most of the calculations are done on a lattice of size 
40 x 40, although some larger systems with sizes up to 
80 x 80 are also examined to check for size effects. 
Symmetric nearest-neighbour interactions act between 
LC molecules and monomers, with the intermolecular 
interaction energy e defined to be, 

10 different neighbouring molecules 
c = like neighbouring molecules (1) 

To see the effects of polymerization on the process of 
phase separation, the time evolution of both polymeriz- 
ing and non-polymerizing systems are studied. 

N o n - p o l y m e r i z i n g  s y s t em s  
In these systems, the monomers remain unpolymerized 

during the process of phase separation. This corresponds 
713 to the uncured LC/matrix systems'  . It is initially a 

uniform mixture of  LC molecules and monomers, and is 
then quenched to a temperature T (measured in units of 
e / kB)  and evolves according to a standard Monte Carlo 
procedure as follows: 

(a) Randomly select a site (i,j) and one of its six nearest 
neighbours, (in,jn). Here i is the column index and j 
the row index of the triangular lattice (Figure  I). 

(b) Evaluate the energy difference AE = E 2 - El of the 
system between the energy E z ( i l j l , . . .  , i n j n , . . . ,  
i j , . . . )  of the new state formed by exchanging 
occupancies of the two sites (i, j) and (in,in), and 
the energy Et  ( i t Jl , . . . , i j , . . . ,  in Jn, . . .) of the original 
state. Since the two sites involved are nearest 
neighbours, and the intermolecular interactions 
also involve only nearest neighbours, the energy 
difference AE due to interchange involves only the 10 
sites surrounding and including the two sites. 

(c) Update according to the rule that if LXE _< 0 the 
exchange between ( i , j )  and (in,jn) is made, but if 
A E > 0  then the exchange is made only if 
e -zxE/r > R, where R is a random number between 
0 and 1, and is changed each time this step is 
executed. 

(d) Repeat the procedure: two new neighbouring sites 
are randomly selected and the system is again 
updated. 

P o l y m e r i z i n g  s y s t ems  

We consider the situation in which the monomers can 
polymerize bifunctionally, so that each monomer can be 
bonded to at most two other monomers. Once formed 
between nearest-neighbouring monomers, a bond is 
considered unbreakable. However, in order to allow 
some mobility to the polymerized molecules we make the 
bond extensible up to the distance between next-nearest 
neighbours, and permit exchanges at this distance. We 
impose no energy cost for this extension. The interaction 
between unlike molecules remains restricted to nearest 
neighbours. 

To the Monte Carlo process for the non-polymerizing 
system described above, a polymerization process 
is added for monomers only. The system starts as 
before with a random distribution of LC molecules 
and monomers, and then utilizes the following 
procedure: 

(a) 

(b) 

(c) 

Randomly select a site (i, j )  and one of its twelve 
nearest and next-nearest neighbours, (in,jn). 
Evaluate the energy difference LXE after and before 
exchanging (i, j) and (in,jn), as in the non-polymeriz- 
ing system. There are now up to 12 sites involved in 
the change of configuration due to the exchange. 
Update in the same way as in the non-polymerizing 
systems section, so that the exchange between (i, j) 
and (in,jn) is made only when e-•E/r > R. Note 
however, that because of the polymerization of 
monomers, the exchange procedure is more restric- 
ted than before. If sites (i, j )  and (in,in) are both 
occupied by LC molecules or by unpolymerized 
monomers, then the exchange between them is still 
only governed by the energy difference (and a 
random number) as described. If, however, one or 
both sites are occupied by polymerized monomers, 
then the exchange between these two sites is also 
restricted by polymer bonds: an exchange of  two 
molecules cannot be made if it would break the 
existing polymer bonds. A polymer bond can be 
extended to next-nearest neighbours, but beyond 
that the bond is considered broken. For  the 
configuration shown in Figure  1, for example, 
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Figure 2 A snapshot of the Monte Carlo simulation in a non-polymerizing system of LC molecules (blue circles), with concentration c = 0.4, and 
monomers (red circles) after some thermalization. At the high temperature T = 2.5 little phase separation is observed 

Figure 3 The same system as in Figure 2 at a lower temperature T = 1.2 (below the critical temperature T, = 1.75). Phase separation occurs and 
nearly circular regions of blue circles are seen 

Figure 4 A polymerizing system with c = 0.4 and Kp = 0.5. The system is at the same high temperature T = 2.5 as in Figure 2, but polymerization 
causes phase separation 
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Figure 5 (a) Equilibrium energy E, shown as a function of  temperature 
T for a 40 x 40 non-polymerizing system c = 0.3, has a sharp increase 
around T = 1.6. (b) The specific heat h as a function of  Tfor  three non- 
polymerizing systems with c = 0.5 and sizes of 40 x 40, 60 x 60 and 
70 x 70. The tendency of  h is to diverge as the system is increased 
confirms the expected singularity in the specific heat at t = 1.75 for this 
concentration 
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Figure 6 The phase diagram for polymerizing and non-polymerizing 
systems. Polymerization raises the phase separation temperature and 
shifts the critical concentration to a larger c value. The dotted curves are 
fits to Flory-Huggins theory. The polymerizing systems have Kp = 0.1 

molecules on site (5, 3) and (6, 2) cannot be 
exchanged because that will break the polymer 
bond between site (4, 4) and site (5, 3). An exchange 
between (5, 3) and (5, 2), however, is possible. 

(d) After each actual or attempted exchange between 

sites (i, j) and (in,jn), try to polymerize site (i, j) 
with one of its randomly selected nearest or next- 
nearest neighbours. This polymerization attempt is 
made successfully with a probability Kp, the polym- 
erization rate, and is subject to the following 
restrictions: 

. 

2. 

Sites (i, j )  and its randomly selected neighbour 
(ip,jp) must both be occupied by monomers. 
Each of the two monomers must have fewer than 
two polymerization bonds. Once a monomer 
polymerizes with another monomer, a polymer 
bond (a yellow bond in Figure 4) is constructed 
between them. In Figure 1 the monomer at site 
(3, 2) cannot polymerize with the one at (2, 3), 
which already has two bonds connected to it. 
It can, however, polymerize with the one at site 
(2, 2), for example, if the other conditions 
are satisfied. This bifunctional polymerization 
process is intended to represent the thermoplas- 
tic polymers. 

(e) Repeat the procedure from (a) to (d). 

In both polymerizing and non-polymerizing systems, 
time-resolved and equilibrium aspects of the phase 
separation process were studied. When examining the 
equilibrium properties of the systems, we discarded the 
first 108 Monte Carlo time steps at high temperatures. At 
low temperatures, the system reaches its equilibrium 
much more slowly, and we correspondingly increased 
the relaxation time to 109-10 l° steps to allow it to 
equilibrate. Calculations were made by averaging data 
over 20 runs with different random initial configurations 
and over configurations measured at 500 different times 
after equilibrium was reached in each run. 

NUMERICAL RESULTS 

Phase separations 

One of the important effects of polymerization on 
phase separation is an increase in the phase separation 
temperature T c determined by the coexistence curve in 
the phase diagram. Figure 2 shows a snapshot of the 
Monte Carlo simulation of a 40 × 40 non-polymerizing 
system. From an initially randomly distributed mixture 
of LC molecules (blue circles) with concentration c = 0.4 
and monomers (red circles) the system is approaching 
equilibrium. The temperature T = 2.5 chosen for this 
system is above the critical temperature To, which at this 
concentration is only about 1.75. The operating point 
thus lies in the one-phase region of the phase diagram. 
The time steps in the figure are measured as the number 
of attempted Monte Carlo exchanges. We see that at 
this high temperature, little phase separation occurs, and 
the system's energy remains elevated. As the temperature 
is lowered to below the critical temperature, a phase 
separation occurs, as shown in Figure 3, where well- 
defined, nearly circular regions of blue circles are 
observed. The effect of polymerization on the phase- 
transition temperature can be seen in Figure 4, in which 
monomers (red circles) have polymerized, as indicated by 
the yellow polymer bonds. We see that at the same high 
temperature, T = 2.5, as that in the uncured system in 
Figure 2, the polymerization has caused phase separa- 
tion. We also see from the figure that the energy of the 
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system is much lower than that in the uncured system. 
The increase in the critical temperature in polymerizing 
systems is due to the decrease in entropy of monomers 
whose motion is restricted by chemical bonds. This will 
now be discussed quantitatively in terms of the relevant 
phase diagrams. 

Phase diagram 
The phase diagram of both polymerizing and non- 

polymerizing systems was formed from the variation of 
equilibrium energies with temperature. System energies 
were calculated numerically for each temperature after 
the systems had reached their equilibria, and thence the 
specific heats were also calculated as functions of 
temperature by numerical differentiation. Figure 5a 
shows the equilibrium energy as a function of tempera- 
ture for a non-polymerizing system with LC concentra- 
tion c = 0.3. The specific heat of the system is shown in 
Figure 5b for c = 0.5 and three different system sizes. The 
energy in Figure 5a shows a sharp increase at a 
temperature around 1.6, and in Figure 5b we see a peak 
in the specific heat at the corresponding temperature as 
expected from the equivalence of this system to an Ising 
ferromagnet. To illustrate the comparative insensitivity 
of the computation to changes in the size of the lattice, 
we plot three specific-heat curves with system sizes of 
40 x 40, 60 × 60 and 70 x 70, and note the small changes 
in location of the singularity. A phase diagram was 
constructed for both polymerizing and non-polymerizing 
systems (Figure 6) using critical temperatures obtained 
from the specific-heat singularity. For the polymerizing 
systems, a polymerization rate of Kp--0.1 was used. 
Similar phase diagrams have been obtained from some 
experiments 3,12,18. 

For comparison the commonly used Flory-Huggins 
approximation for the coexistence curve is shown in 
Figure 6 as a pair of dotted curves. These two curves were 
calculated from the relations 14 

x = [ l n ~ , - l l n  l - c ]  
m 1 - c ' j / [ 2 ( c -  c'] (2) 

and 
1 - c )  

2(1 - m)(c - c') + (2 - c - c')ln 

+m(c + c')ln(~,) = 0  (3) 

where m is the degree of polymerization of the polymer 
and X is the interaction parameter between LC and 
polymer and is taken to be of the form X = A + B/T.  
The parameters A and B in the expression for X were 
chosen to be A = - 5  and B = 15 in order to obtain the 
best fit to the lower dotted curve, for which m = 1. The 
upper dotted curve was produced by choosing the value 
of m as 12 in order to fit the critical temperature 
indicated by the data. One sees that the Flory-Huggins 
approximation provides a reasonable fit to the polymer- 
ized system if one can make the right guess as to the 
effective degree of polymerization. 

Growth of liquid-crystal droplets 
In the absence of polymerization, the prediction of the 

rate of growth of droplets reduces to a well-studied 
problem. For times that are neither too short nor too 
long one expects a result of the Lifshitz-Slyozov form 23, 
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Figure 7 Averaged droplet size 17 as a function of time t for a 
polymerizing system with c = 0.3 and Kp = 0.1. The droplet curves are 
fits to a modified Lifshitz-Slyozov expression 
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in which the typical droplet diameter D grows as t 1/3. An 
obvious question to ask is how this result is modified in a 
polymerizing system. 

Before examining the results of the simulation, 
however, we pause to note some expected limitations in 
the interpretation in terms of simple expressions for the 
rate of growth of droplets. The energy is, in our model, 
due entirely to the interaction between unlike molecules 
on neighbouring sites, and is thus a measure of the total 
length of the boundaries separating regions of  pure 
liquid crystal from pure polymer. Because the transition 
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that occurs when the coexistence curve is crossed is of 
second order, neither the energy nor its derivative with 
time is discontinuous. This means that it is impossible to 
tell by eye the difference between two configurations 
formed in simulations marginally below and above the 
transition temperature. 

In discussing the size of 'droplets' we note that the 
irregularly shaped inclusions of pure material we identify 
are different from the spherical domains of homogeneous 
mixture that form the basis of many theories of 
coarsening. We nevertheless make the approximate 
connection between the two approaches. The diameters 
D of the 'droplets' seen in a two-dimensional model will 
scale as the (non-fractal) lengths of their perimeters and 
hence as the energy divided by the number No of 
droplets. To conserve the total number of LC molecules 
we must have No D2 approximately constant. This leads 
to the conclusion that D o~ E -1 . 

The simulations to determine the rate of growth of  
droplet size were performed by starting a binary system 
at a uniform mixture by randomly distributing LC 
molecules and monomers. The system was then 
quenched to the desired temperature and allowed to 
evolve by the Monte Carlo procedure described earlier. 
The LC droplets are seen to grow rapidly as the phase 
separation begins, and then to grow more slowly as 
equilibrium is approached. Figure 7 shows the averaged 
droplet size I? as a function of time for a polymerizing 
system with c = 0 . 3  and K p = 0 . 1 .  The size I? i of  a 
droplet is defined as the number of  LC molecules inside 
the droplet, and I? is then simply 

= No ~=1 vi (4) 

where No is the total number of droplet clusters with 
at least five LC molecules, and Vi the size of the /th 
droplet. The relative size deviation A V used to measure 
the uniformity of droplets is defined as 

av=±@l vi-vl (5) 
N0,_  V 

Because the results of  our simulation are obviously not 
in agreement with the standard Lifshi tz-Slyozov 
relation V = at 2/3, we have attempted to fit the data 
to the so-called modified Lifshi tz-Slyozov law 21 of  the 
form V = a + bt 2/3, shown as dotted lines in Figure 7. 
For t > 6 × 105 a passable agreement is seen. 

The dependence of the averaged droplet size on 
temperature can be seen in Figure 8 for a non- 
polymerizing system with c = 0.2. We see not only an 
increase in droplet size with decreasing temperature, but 
also a rapid increase in the rate of the size increase near 
the critical temperature (about 1.5 in this case). This 
confirms the inverse relation between energy and droplet 
size, and is also a signature of the phase separation. 
Similar behaviour of droplet size has been observed in 
experiments 3'4. 

The depth of  quench influences the size distribution 
of droplets in systems of low molar mass, and a similar 
effect is seen in the polymerizing systems. Figure 9 
shows the size deviat ion/k V for a polymerizing system 
with c = 0.3 and Kp = 0.1 as a function of  temperature. 
At low temperatures, which correspond to a deep 
quench, the droplet size is fairly uniform, as it is at high 
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Figure l0 The effect of polymerization rate Kp on the averaged droplet 
size 12. Shown are three systems with c = 0 . 5 ,  T =  1.0, and 
Kp = 0.1,0.5 and 0.9, respectively 

temperatures above the transition point. It is only at 
temperatures close to the transition point (about 
Tc -- 2.4 in this case) that large variations in droplet 
size are seen. 

We have used both polymerizing and non-polymerizing 
systems in our calculations of the dependencies of droplet- 
size growth rate, equilibrium size and size uniformity on 
temperature and concentration. The behaviour of these 
dependencies is similar in both types of system, although 
the critical temperatures are different. 

The effect of polymerization rate K v on LC droplet size is 
shown in Figure 10. A larger Kp leads to smaller averaged 
droplet size. This is as expected, since fast polymerization 
seals small LC droplets before they can grow larger. This 
fast curing effect on droplet size has been observed in some 
experiments 24-26, where the cure rate was controlled by 
changing the intensity of incident ultraviolet light. Our 
numerical calculations also indicate that a smaller Kp 
produces more uniform droplets. 

Structure factor 
Structure factors of polymer-polymer and polymer-  

solvent systems on simple cubic lattices have been 
calculated by some authors 19'21. We will similarly 
calculate the time-resolved structure factor for our two- 
dimensional PDLC system on a triangular lattice. The 
structure factor S(4, t) for LC molecules is 

1 
S(4, t) = ( ~  ~ ~ e i¢t7-~ / [4~(F, t)¢(F', t) - c2]) 

F p' 

271- 
~ = (T;)(ni, nj) withni, nj = 0, 1 , . . . , N -  1 

I V -  
(6) 

where Nt is the total number of LC molecules, N × N the 
total number of lattice sites and c = <¢). The summations 
run over the whole lattice, and the average ( /  is the 
configurational average. Equation (6) can be written in a 
more practical form as 

s t) = < !  cos(4r-) + 
Nt 

sin(g-r-') ) - c2 Ntrq-o 

where ~-~r sums over LC molecules only. 

(7) 
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Fig~e  12 Plot of  the maximum,  Smax, of  the structure factor as a 
function of  temperature T for a polymerizing system with c = 0.3 and 
Kp =0 .1  

Because our simulation is performed on a triangular 
lattice our results for S(¢7, t) are comparatively free of the 
anisotropy that is an artifact of the use of square or cubic 
lattices. We nevertheless average over directions of ~ in 
the manner suggested in ref. 21. That is, we define a 
spherically averaged structure factor S (q, t), 

1 q+Aq/2 
S(q,t) =-~ ~ S(~,t) (8) 

q q=q-Aq/2 

where n. = ~q+~q/2 1, where q = Iq--], and •q is chosen 
to be 27~/N. q=q-taq/2 

The time resolved structure factor defined in equa- 
tion (8) for a polymerizing system with c=0 .3 ,  
Kp = 0.I and T = 2.3 is shown in Figure 11. A similar 
structure factor is also seen for non-polymerizing 
systems. We see that as the phase separation progresses 
the peak of S(q,t) grows and the q value at the peak, 
qmax, decreases. This behaviour of S(q,t) has been 
observed in PDLC experiments 16, although the 
decrease in qmax in our model is not as large as in one 
of the experiments. Similar behaviour was also 
reported in polymer blend experiments 17'18 and in 
numerical studies of polymer-solvent and polymer 
blend systems 19'21. Figure 12 shows the temperature 
dependence of the equilibrium maximum of the struc- 
ture factor, S, nax. For a polymerizing system with 
c = 0.3 and Kp = 0.1, we see again that Smax has a large 

decrease near the critical temperature. The large-q tail 
of the structure factor decays more rapidly than would 
be expected from the Porod-law prediction z7 of q-3 for 
two-dimensional systems, but this is probably 
not significant, given the small size of the sample. 

CONCLUSION AND DISCUSSION 

In this two-dimensional set of simulations of a system 
undergoing phase separation we have seen that the 
observed structures are qualitatively similar to what one 
might expect on the basis of some simple theories. The 
details of this behaviour, however, are not described 
well by these models. The polydispersity of the mol- 
ecules formed in the polymerization process must be 
expected to lead to deviation from Flory-Huggins 
theory, and this is indeed observed at low and high 
concentrations. 

The use of a triangular lattice (rather than the square 
lattice traditionally favoured for its ease of implementa- 
tion) results in a structure that has comparatively low 
anisotropy. This should mean that our calculations of 
droplet size will be more meaningful than those produced 
from simpler models, and hence more relevant to 
predictions concerning PDLC films. We find that 
higher temperatures, larger polymerization rates or 
smaller LC concentrations all lead to smaller LC 
droplets. Droplet size was found to be least uniform 
near phase separation temperatures. 

The time-resolved structure factor S(q, t) showed an 
increase in its maximum and a decrease in the position of 
the dominant wavenumber as time increased. While 
these results are expected on the basis of Lifshitz- 
Slyozov theory, the rate of growth of droplet size is 
apparently further reduced by the lowered mobility of 
the growing polymers. The relatively long inception time 
for phase separation experimentally observed in ref. 16, 
however, was not seen in our calculations: the LC 
droplets and structure factor in our model start to grow 
very quickly after quench or polymerization begins. We 
bear in mind, however, that the dimensionality of the 
system is important, and that a three-dimensional model 
might yield different behaviour. 
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